On Wong-Zakai type approximations of reflected diffusions

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wong-Zakai type convergence in infinite dimensions

The paper deals with convergence of solutions of a class of stochastic differential equations driven by infinite-dimensional semimartingales. The infinite-dimensional semimartingales considered in the paper are Hilbert-space valued. The theorems presented generalize the convergence result obtained by Wong and Zakai for stochastic differential equations driven by linear interpolations of a finit...

متن کامل

Wong-zakai Approximations with Convergence Rate for Stochastic Partial Differential Equations

The goal of this paper is to prove a convergence rate for WongZakai approximations of semilinear stochastic partial di erential equations driven by a nite dimensional Brownian motion.

متن کامل

Discrete approximations to local times for reflected diffusions

For an arbitrary bounded Lipschitz domain D, we propose a class of discrete analogues for the boundary local time of reflected diffusions in D. These discrete analogues are obtained from random walks on D := D ∩ 2−kZd and can be effectively simulated in practice. We prove weak convergence of the joint law of the random walks and the proposed analogues to the joint law of reflected diffusion and...

متن کامل

Quantum Stratonovich Stochastic Calculus and the Quantum Wong-Zakai Theorem

We introduce the Stratonovich version of quantum stochastic calculus including integrals with respect to emission (creation), absorption (annihilation) and scattering (conservation) processes. The calculus allows us to consider the limit of regular open dynamical systems as a quantum Wong-Zakai approximation theorem. We introduce distinct definitions of Itô Dyson and Stratonovich Dyson time-ord...

متن کامل

Quantum Stratonovich Calculus and the Quantum Wong-Zakai Theorem

We extend the Itō-to-Stratonovich analysis or quantum stochastic differential equations, introduced by Gardiner and Collett for emission (creation), absorption (annihilation) processes, to include scattering (conservation) processes. Working within the framework of quantum stochastic calculus, we define Stratonovich calculus as an algebraic modification of the Itō one and give conditions for th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Probability

سال: 2014

ISSN: 1083-6489

DOI: 10.1214/ejp.v19-3425